
Clinical examples

Diego Velázquez

Achondroplasia

- Antenatal diagnosis
- 1 in 20 000 live births
- Medical challenges
- Psychosocial challenges
- Architectural challenges
- Mean height 130cm/125cm

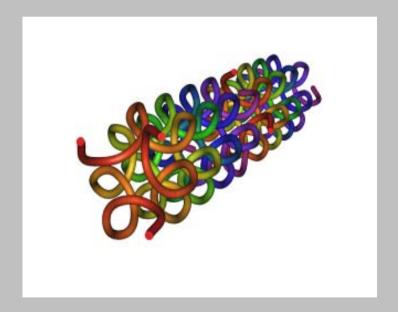
Achondroplasia

Radiographic features

Achondroplasia: Medical complications

- Compression FM
- Sleep apnea
- Thoracolumbar kyphosis
- Spinal stenosis
- Hydrocephalus
- orthopaedic limb deformity
- ENT/Dental
- Obesity

Achondroplasia: Psychosocial challenges


- Throughout life
- Multidisciplinary approach
- Support groups
- Peers
- Education of community/health workers
- Discussion of issues as arise and anticipatory guidance

Achondroplasia: Architectural challenges

- Modifying environment to suit size
- school desks/chairs
- Occupational therapists
- Devices to aid autonomy
- Modified cars later in life

Translational Research

- Type II collagenopathies
- Screening of first 6 patients
- 3 mutations
- 3 different phenotypes
- Lab-Clinical Liaison
- Benefit to families

Mutations in extracellular matrix molecules Collagen XI Fibronectin COMP **Stickler syndrome** Collagen II/XI **Multiple epiphyseal** COMP dysplasia **Pseudoachondroplasia** Integrin Matrilin 3 PRELP **Multiple epiphyseal** can dysplasia Collagen II Matrilin 1,3 **Achondrogenesis II Hypochondrogenesis** <u>Aggrecan</u> **SED** congenita **SED Strudwick Kniest dysplasia SED - late onset** Asporin **Stickler syndrome** Collagen IX COMP Collagen IX Multiple epiphyseal dysplasia Collagen X Collagen **Recessive Stickler Schmid metaphyseal** CILP chondrodysplasia May 2008 Ravi Sava Collagen XII/XVII

Molecular classification of skeletal dysplasias

Structural cartilage	Collagen type II	Kniest, Stickler,
proteins		achondrogenesis 2
Cartilage metabolic	Diastrophic dysplasia	DTD, ATO 2, ACH1B,
pathways	transporter	rMED
Local cartilage growth	FGFR3	Achondroplasia,
regulators		hypochondroplasia, TD
Transcription factors	CDMP-1	BDC, Grebe dysplasia
Cell membrane	WISP3	PPD
proteins		
Tumour suppressor	EXT 1, 2	Multiple exostoses
genes		
Signal transduction	TGFβ-1, ROR2	Diaphyseal dysplasia,
mechanisms		BDB

May 2008 Ravi Savarirayan: Bologna

Type II collagenopathies

- Achondrogenesis II
- Torrance type PLSD
- Hypochondrogenesis
- SED congenita
- SEMD Strudwick
- Kniest
- Stickler syndrome
- SED with premature arthritis
- Intermediate phenotypes

JF

- Seen at age 19 years.
- Stiff and painful joints ankles, left shoulder, neck and back over the few years.
- Normal palate and midface. Normal feet.
- Loss of extension both elbows 10 degree bilaterally. Prominent interphalangeal joints.
- Ankle pain operated in 1999 aged 16 years to remove loose cartilage
- MRI L shoulder moderate OA in the superior compartment with multiple intra articular loose bodies.
- Mutation found: (Gly/Ala) next steps......

AP knees

F= femur

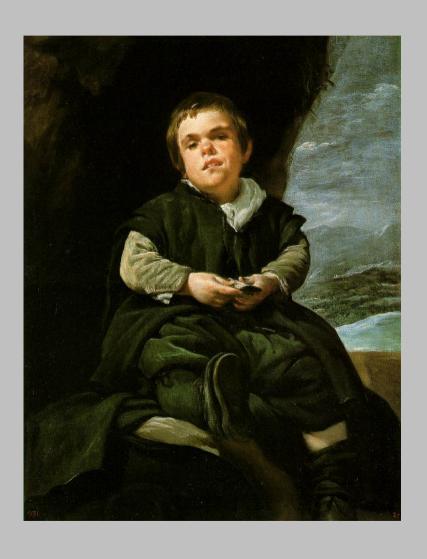
T= tibia

C= calcaneus

Ravi Savarirayan: Bologna

May 2008

Lat ankle


Natural history studies

- CDP-TM (Savarirayan et al., 2003)
- Metatropic dysplasia (Kannu et al., 2007)

- Why we can do these studies.
- Why we must do these studies.

Ongoing projects (achondroplasia)

Delineating the natural history

Metatropic dysplasia: History

- First described by Kaufmann (1893)
- Separated and named as distinct phenotype by Maroteaux, Spranger and Wiedemann (1966)
- metatropos (Gr.) dwarfism "with change"
- Over 75 cases reported from all ethnic groups
- Pathogenetic basis of the condition unknown

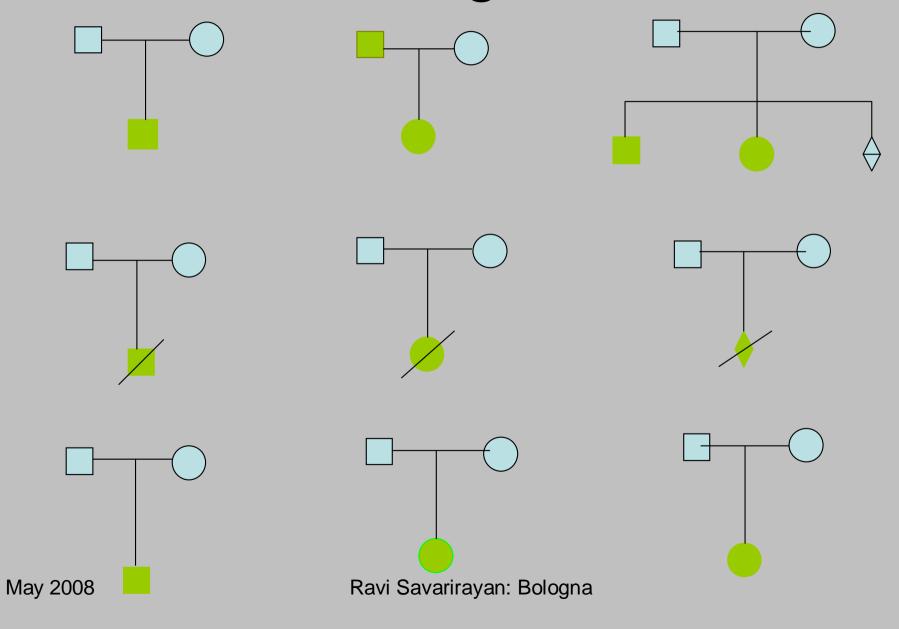
Metatropic dysplasia: Phenotype

- Initially short limbs with relatively long trunk
- Birth length normal
- Prominent joints with limited motion
- Scoliosis may be present at birth
- Caudal appendage/cutaneous skin fold
- Characteristic radiographic findings (SEMD)

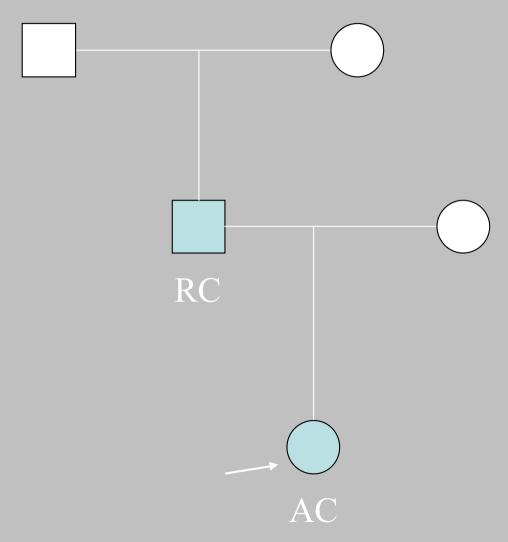
May 2008

Metatropic dysplasia: classification

- Three subtypes proposed (Beck et al., 1983)
- Non-lethal recessive form
- Non-lethal dominant form
- Lethal recessive form


- Added to this are metatropic "variants"
- Unclear and confused situation

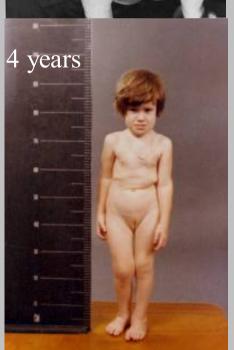
Metatropic dysplasia natural history study


- Eleven patients with metatropic dysplasia over past 35 years (9 Australia, 2 New Zealand)
- Age range 20 weeks of gestation to 70 years
- 6 females, 5 males
- One father and daughter pair
- One sib pair (parents unrelated)

May 2008 Ravi Savarirayan: Bologna

Metatropic dysplasia: Pedigrees

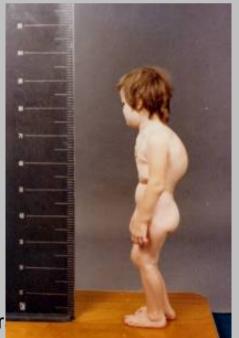
Metatropic dysplasia: Father and daughter

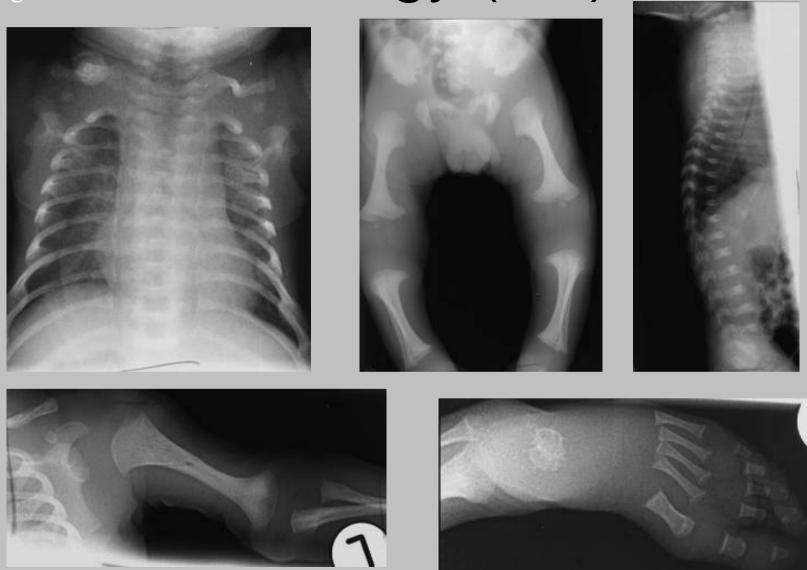


May 2008

26 days

Patient AC





Metatropic dysplasia: radiology (AC)

Age 1 month

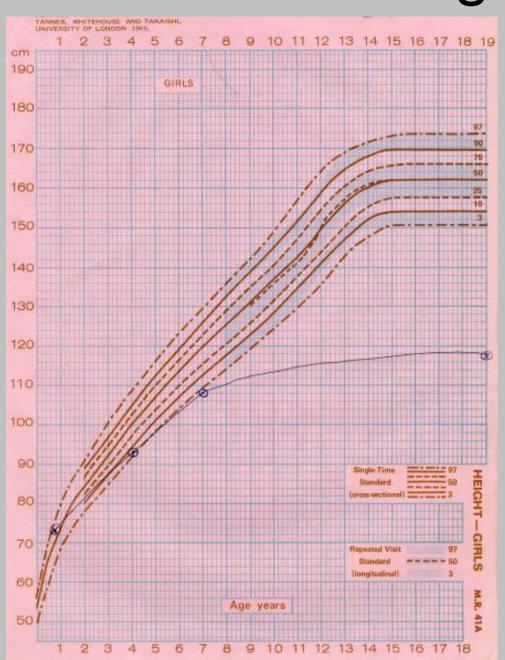
May 2008

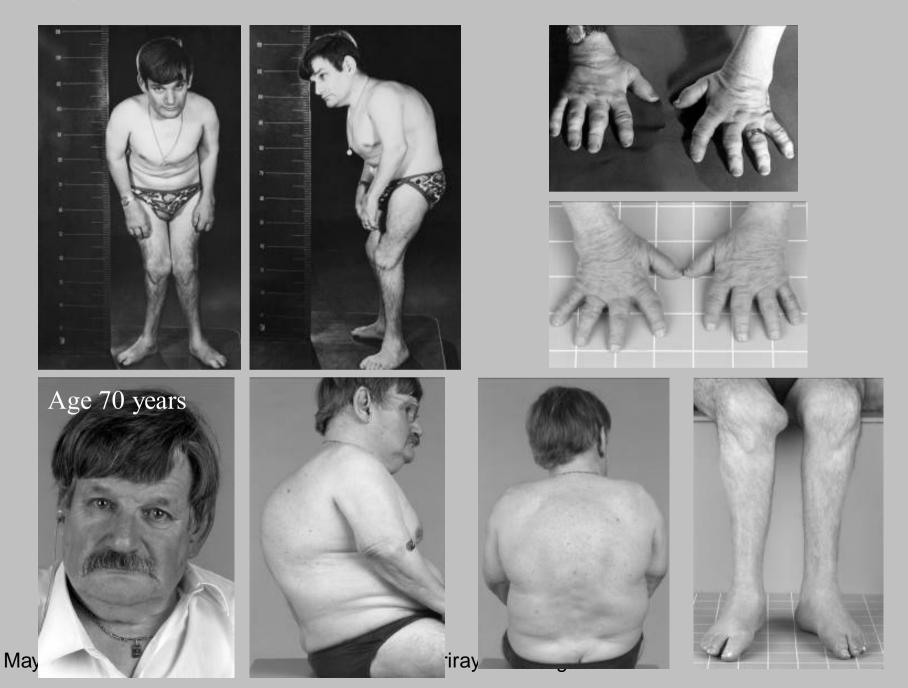
Ravi Savarirayan: Bologna

Age 12 years

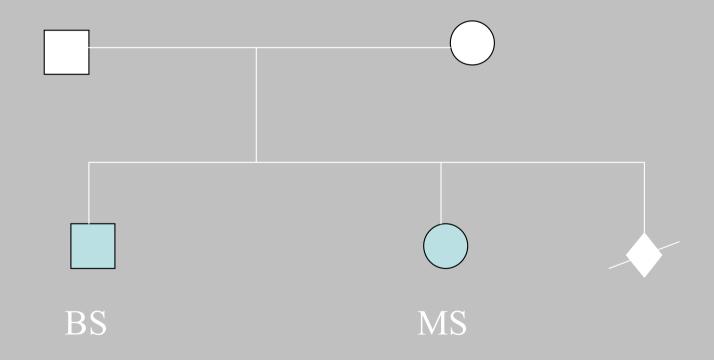
Patient AC

Ravi Savarirayan: Bologna




May 2000

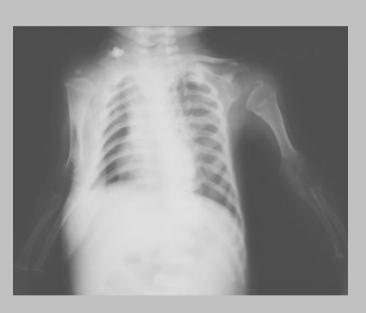
Patient AC: Linear growth



Age 36 years

Patient RC

Metatropic dysplasia Brother and sister



Metatropic dysplasia: Patient MS

Age 7 months

May 2008

Ravi Savarirayan: Bologna

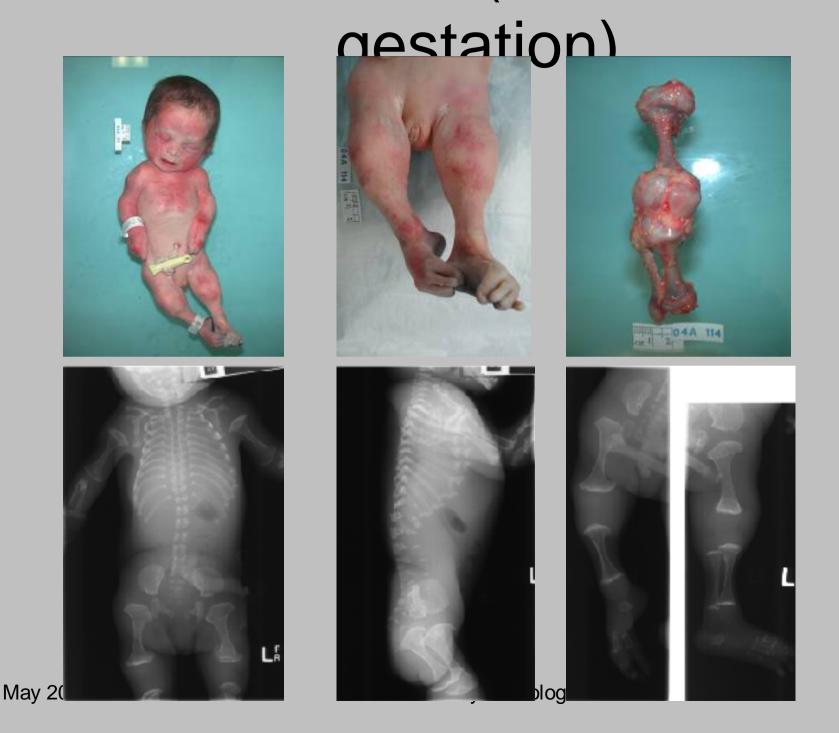
"Lethal" metatropic dysplasia: Patient GW

- Second child, unrelated parents (F25, M23)
- Short long bones noted @ 20 weeks gestation
- Born with short limbs, long trunk
- Recurrent episodes respiratory distress as neonate
- Stridor, partial vocal cord paralysis
- Died age 3 months due to respiratory arrest in setting viral bronchiolitis

May 2008 Ravi Savarirayan: Bologna

Patient GW: Radiology

Age 2 months



May 2008 Ravi Savarirayan: Bologna

Metatropic dysplasia: Antenatal diagnosis Patient TW

- First pregnancy to healthy, unrelated parents
- Ultrasound @ 18 week gestation showed short limbs, platyspondyly, small chest, short ribs, and fixed extension of knees
- Normal karyotype, 46XX
- Elective termination @ 20 weeks gestation
- Definitive diagnosis at post mortem

Fetus IVV (20 weeks

Metatropic dysplasia: 1. ENT/Respiratory Complications

- In our cohort 2 patients (GW/SD) died from upper respiratory tract dysfunction with abnormal vocal cords/arytenoid fusion/laryngotracheomalacia
- Third case had respiratory arrest and found to have severe laryngotracheomalacia (direct vision)
- Numerous examples of "respiratory" demise/stridor/respiratory arrest in literature
- Need to be aware of/manage this complication in infancy especially if stridor
- Natural history is to improve with time
- Later hearing loss (high freq S/N) in 3/5 followed to adulthood (supports *Genevieve et al, 2005 AJMG*)

May 2008 Ravi Savarirayan: Bologna

Metatropic dysplasia:

2. Natural history of spinal changes

- In all three cases followed over 30 years progressive kyphoscoliosis occurred
- One case (RM) had ant./post. spinal fusion at age 2 years, repeat anterior fusion at age 4 years, and posterior spinal osteotomy/Harrington rod insertion at age 7 years
- Another case (BS) had anterior fusion at age 9 years. At age 39 years (Ht=107cm), severe kyphoscoliosis, symptoms of spinal canal stenosis.
- C1-C2 instability in only 1 case (none of 5 followed to adulthood)

Patient RM: Spinal changes)

Age 35 years

Patient RM: Spinal changes

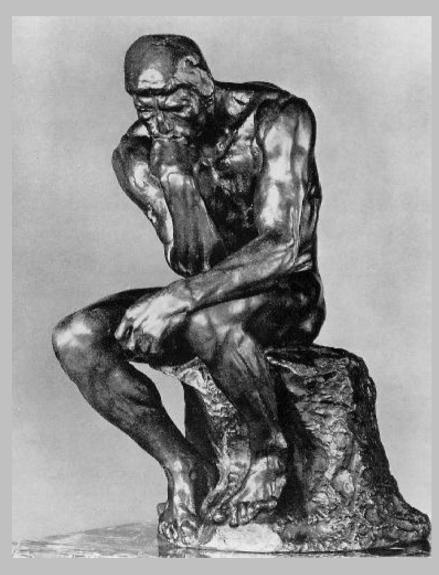
orsal lat spine em It

Metatropic dysplasia 3. Longterm functional outcome

- In all five adult patients (age 33-70 years) function well with respect to ADL
- Intellect normal in all cases
- Patient RM (aged 33) rides a bike and can climb stairs
- All able to drive modified motor vehicles
- One uses wheelchair for longer distances (AC)
- SOB due to restrictive lung disease in 3/5 adults
- Very little in way of arthritic symptoms reported in these adults
- Final adult height 107-135 cm.
- Hearing loss in 3/5 adults

May 2008 Ravi Savarirayan: Bologna

Metatropic dysplasia: Conclusions


- Based on these data, little evidence to support three distinct entities
- Overlap between "mild", "classic", "lethal" forms
- Many cases in literature who died classified as "lethal recessive"
- Our father/daughter cases, sib cases, and "lethal" cases clinically and radiographically alike
- In reported families ratio affected:unaffected not 1:4 (more like 1:20)

Metatropic dysplasia: Conclusions

- Condition might be caused by single dominant gene (important in endochondral ossification and in ?expressed in respiratory cartilage)
- Various "subtypes" accounted for by variable expression and sib recurrence by gonadal mosaicism
- Early complications include layngotracheomalacia (monitor)
- Late complications include spinal deformity (how best to manage?) and sequelae and hearing loss
- Good longterm intellectual outcome and function
- Elucidation of genetic basis important to settle these issues

Kannu..Savarirayan, AJMG, 2007

May 2008 Ravi Savarirayan: Bologna

Ravi Savarirayan: Bologna

- Qualitative study looking at experiences of parents at time of diagnosis of achondroplasia and pseudoachondroplasia
- Structured questionnaire given to each parent in the home
- Families from cities and rural areas
- Impact of diagnosis
- Good and bad experiences documented
- Main themes extracted for discussion/action

Hill et al, AJMG, 2003

- Many parents felt let down by their physicians
- Setting and manner of diagnosis delivery crucial
- Vivid recall of time around diagnosis
- Time to "expert" consultation important
- Data used to develop information packs for health care workers/families/patients
- Patient input now part of our program to offer feedback and improve our services

- Throughout life
- Multidisciplinary approach (genetic counsellors)
- Support groups
- Peers
- Education of community/health workers
- Discussion of issues as arise and anticipatory guidance

Relevance to common disease processes

Is any of this relevant to more common diseases?

 Widely relevant to common conditions and disease processes such as short stature, osteoarthritis and osteoporosis

1. Osteoarthritis "genes"

- Polymorphism in small ECM molecule (asporin) predisposes Japanese populations to knee and hip osteoarthritis
- Implications for population genetic screening, therapeutic management and prevention targeting of high risk groups

Nat Genet 37, 2005 (Kizawa et al.)

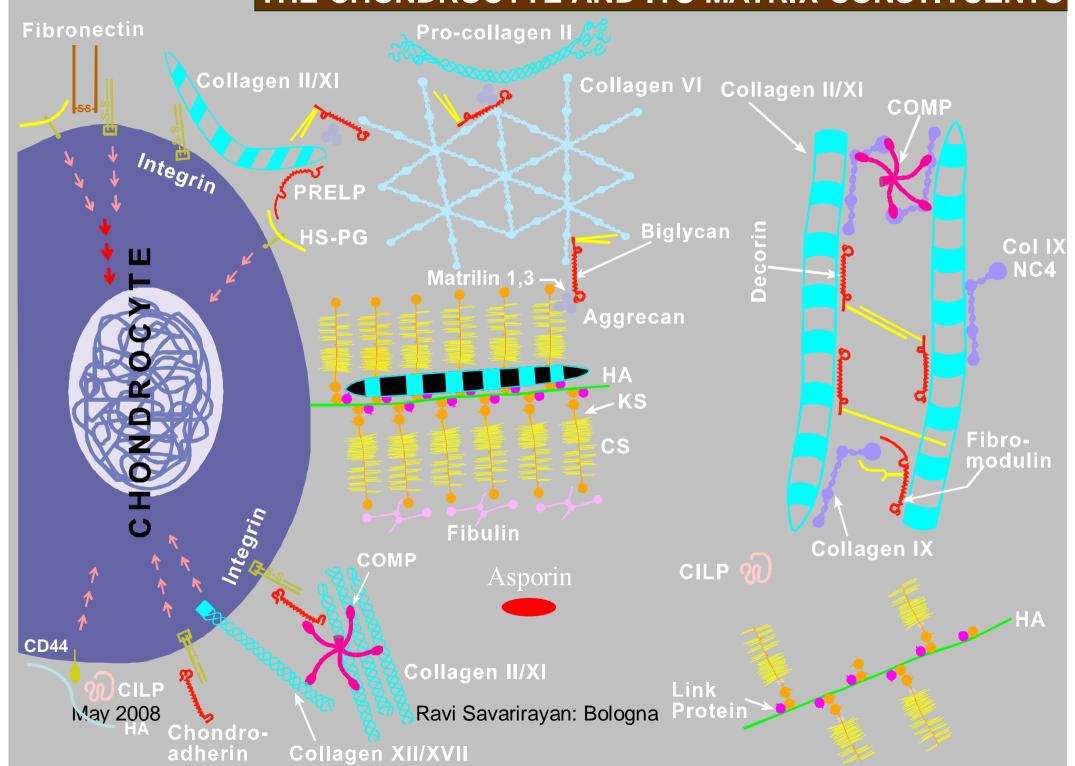
2. "Genes" for lumbar disc disease (LDD)

- LDD caused by degeneration of intervertebral disks
- Common cause back pain/sciatica/spinal surgery
- Functional SNP (1184T-C) in CILP associated with LDD susceptibility
- Effects mediated by inhibition of TGFB1 induction of cartilage matrix genes in disks

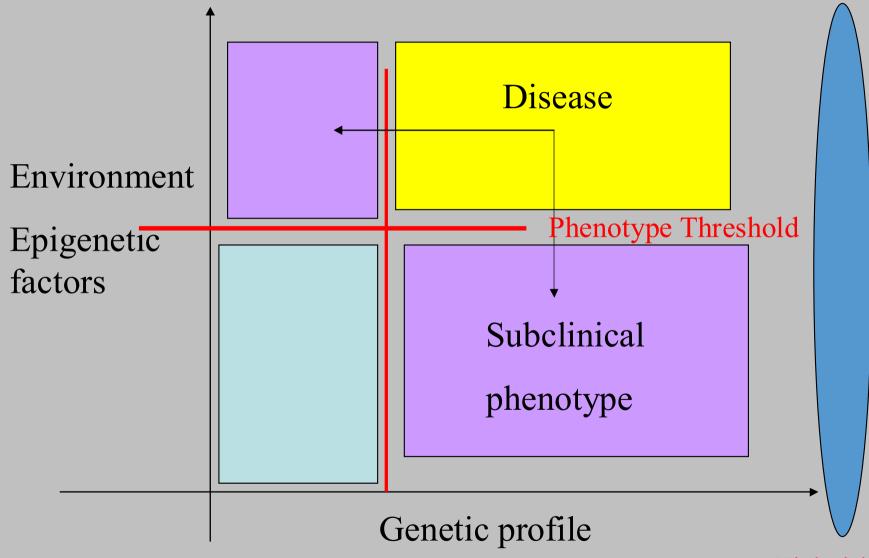
Seki et al., Nat Genet, June 2005

3. Osteoporisis 'genes'

van Buchem disease



Osteoporosis "genes"


- Sclerosteosis/Van Buchem disease gene (SOST)
- Different polymorphisms in this gene associated with increased and decreased BMD in elderly Dutch white men and women (n=2000) at femoral neck and lumbar spine
- Public health implications

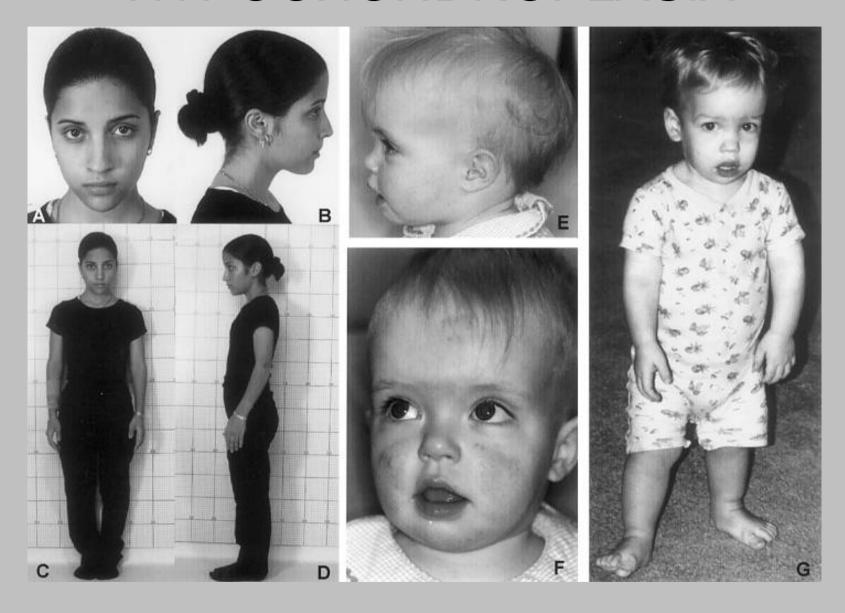
Uitterlinden et al., Am J Hum Genet Dec 2004

THE CHONDROCYTE AND ITS MATRIX CONSTITUENTS

"Personalised Genomics"

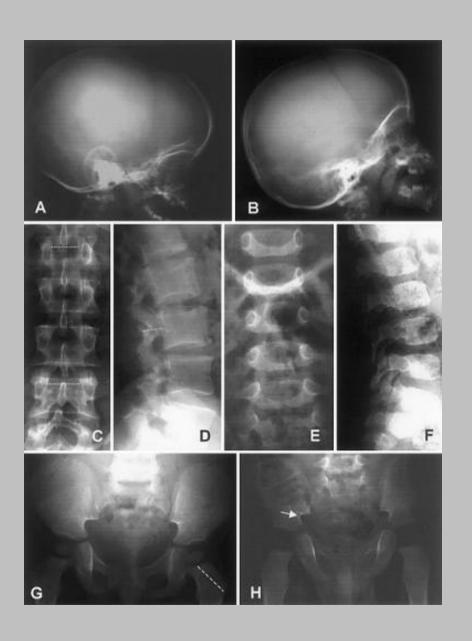
High risk group

4. Short stature


 Patients presenting with "idiopathic" or "constitutional" short stature might well have an underlying skeletal dysplasia/genetic cause

1. HYPOCHONDROPLASIA

- Clinical
- Radiographic
- Common mutation in 45-50% (FGFR3;N540K)
- "Familial" short stature



HYPOCHONDROPLASIA

May 2008 Ravi Savarirayan: Bologna

HYPOCHONDROPLASIA

FGFR and height

- It is likely that many cases of "familial" short stature have this condition
- Other polymorphisms in these FGFR genes (and others such as COL11A1) probably predispose to final adult height in our populations

Where are we going? Brave new world?

Ravi Savarirayan: Bologna

The road ahead.....

- More prenatal testing options/choices will be available to families
- Medical conditions such as congenital hip dysplasia, scoliosis, spinal degeneration, limb deficiency, osteo-arthritis, club feet, will have accurate genetic markers identified to allow selection of embryos through IVF/PGD.
- Ethical issues of who will pay for this technology and who will decide if it to be employed and for whom?

The road ahead.....

- More specific/confirmatory genetic tests for these conditions or predispositions
- Targeted anticipatory counselling regarding lifestyles and risk factors to avoid for certain predispositions (i.e. arthritis)
- Population screening for predisposition "genes" and polymorphisms
- Issues of how this will affect our lives, employment, insurance, marriage prospects?

The road ahead.....

- Better treatment/management strategies due to better understanding of the pathogenesis of these conditions
- Platform for biomaterial development and new therapeutic approaches
 - Recombinant growth factors and autologous bone marrow therapy as adjunct to current management
- Further dissection of molecular pathways of the musculoskeletal system and interacting factors (environment, sex, age)

MELBOURNE BONE DYSPLASIA PROGRAM

- Clinical diagnosis/management
- Basic research
- Applied testing of new research
- Long term natural history studies
- International links for gene tests and collaborative clinical/molecular projects (Manchester)
- MCRI Theme Grant over 3 years
 In addition to NHMRC Project and ARC Discovery grants

MELBOURNE BONE DYSPLASIA PROGRAM

Bone Dysplasia Registry **Ethics Orthopaedics** Genetic Counselling Molecular Diagnosis **Laboratory Endocrinology** Education Molecular Genetics Laboratory **Dentistry** Bone & cartilage development and disease Cartilage & Bone Commercial Regeneration Program Partner Biomaterial development

May 2008 Ravi Savarirayan: Bologna